A CS decomposition for orthogonal matrices with application to eigenvalue computation
نویسندگان
چکیده
We show that a Schur form of a real orthogonal matrix can be obtained from a full CS decomposition. Based on this fact a CS decomposition-based orthogonal eigenvalue method is developed. We also describe an algorithm for orthogonal similarity transformation of an orthogonal matrix to a condensed product form, and an algorithm for full CS decomposition. The latter uses mixed shifted and zero-shift iterations for high accuracy. Numerical examples are presented.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملJ-Orthogonal Matrices: Properties and Generation
A real, square matrix Q is J-orthogonal if Q JQ = J , where the signature matrix J = diag(±1). J-orthogonal matrices arise in the analysis and numerical solution of various matrix problems involving indefinite inner products, including, in particular, the downdating of Cholesky factorizations. We present techniques and tools useful in the analysis, application and construction of these matrices...
متن کاملMatrix methods for quadrature formulas on the unit circle. A survey
In this paper we give a survey of some results concerning the computation of quadrature formulas on the unit circle. Like nodes and weights of Gauss quadrature formulas (for the estimation of integrals with respect to measures on the real line) can be computed from the eigenvalue decomposition of the Jacobi matrix, Szegő quadrature formulas (for the approximation of integrals with respect to me...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملAlgebraic Algorithms
This is a preliminary version of a Chapter on Algebraic Algorithms in the upcoming Computing Handbook Set Computer Science (Volume I), CRCPress/Taylor and Francis Group. Algebraic algorithms deal with numbers, vectors, matrices, polynomials, formal power series, exponential and differential polynomials, rational functions, algebraic sets, curves and surfaces. In this vast area, manipulation wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015